
A SYNTHESIS OF CIS-α,β-UNSATURATED NITRILES BY KINETICALLY CONTROLLED DECARBOXYLATION

John Fairhurst, David C. Horwell* and Graham H. Timms Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, England.

(Received in UK 27 August 1975; accepted for publication 15 September 1975) The Doebner condensation of aldehydes with cyanoacetic acid gives a cis/trans mixture of α,β -unsaturated nitriles containing a high proportion of the trans isomer¹. The purification of the minor cis isomer has been accomplished by inefficient and laborious fractional distillation or crystallisation^{2,3}. However, Knoevenagel reaction gives the intermediate α -cyano-acrylic acids in high yield^{1,3}. It has been suggested⁴ that in these compounds the carboxylic acid group lies exclusively trans to the larger β -substituent thus the nitrile group is necessarily cis orientated. Thus kinetically controlled decarboxylation should yield exclusively the cis- α,β -unsaturated nitrile.

We have found that Cu, Cu₂O or Cu₂O/bipyridyl or 1,10 phenanthroline mixture catalysed decarboxylations gives variable yield of the *cis* nitrile in solution (e.g. benzene, 1,2-dichlorobenzene) but extensive isomerisation to the *trans* isomer occurs under the experimental conditions, as assayed by g.l.c. The kinetically formed *cis* isomer⁵ is isomerised possibly *via* a vinyl copper intermediate⁶ or more likely by an addition-elimination process⁴ However, thermal decarboxylation *in vacuo* (0.2 mm Hg) using cuprous oxide as catalyst was performed removing the *cis* isomer *as it was formed*. We have found that Cu₂O is superior to copper powder for this purpose. This procedure effects a simple, reproducible technique for obtaining an isomeric mixture containing 70-90% of the *cis* isomer. The optimum catalyst ratio was not established. One experiment using silver^I oxide as catalyst gave 90% *cis* isomer. The results are summarised in the table.

Typical Procedure; Preparation of cis-cinnamonitrile

 α -cyano- β -phenyl acrylic acid⁸ (25 g) was intimately mixed with cuprous oxide (1.0 g) in a round bottom flask clamped horizontally leading to a cooled receiver *in vacuo* (0.2 mm Hg). The solid was heated slowly with a

Bunsen flame to effect a reasonable rate of decarboxylation ($\simeq 20$ min). The product (8.5 g) was estimated by N.M.R. integration as being 13% *trans* isomer (CDCl₃: δ =5.6, 5.9 doublet; J=17 Hz) and 87% *cis* isomer (δ =5.28, 5.47, J=12.6 Hz). Pure *cis* cinnamonitrile was readily obtained on distillation through a spinning band column as a colourless liquid b.p. 106^oC (10 mm Hg).

α-cyano-β-aryl carboxylic acid R=	Yield of α,β - unsaturated nitrile mixture		isomer ins in ets)	b.p. [°] or m.p. [°] C of pure <i>cis</i> isomer
phenyl	46	87	(13)	b.p.105-106 (10 mm Hg)
51	Lit ² , 50	37	(63)	-
o-chlorophenyl	80	78	(22)	b.p. 90-92 (1.2 mm Hg)
11	Lit ⁶ , 45	22	(78)	
3,4-dichlorophenyl	49	70	(30)	m.p. 60-60.5
p-chlorophenyl	72	73	(27)	m.p. 66.5-67.5
17	Lit ⁷ , -	38.5	(61.5)	
2-thiophenyl	53	8Ô	(20)	b.p.126 (10 mm Hg)
17	Ag ₂ O catalyst, 71	90	(10)	
p-bromophenyl	63	85	(15)	m.p. 69-69.5
2,6-dichlorophenyl	79	82	(18)	m.p. 25-26
m-trifluoromethyl phenyl	75	70	(30)	b.p.110-112 (10 mm Hg)
p-tert.butyl phenyl	50	87	(13)	b.p.160 (0.1 mm Hg)

TABLE: DECARBOXYLATION RESULTS OF α -CYANO- β - ARYL ACRYLIC ACI	TABLE:	DECARBOXYLATION	RESULTS	OF	α-СΥΛΝΟ-β-	ARYL	ACRYLIC	ACID
--	--------	-----------------	---------	----	------------	------	---------	------

Acknowledgements

We thank Miss D. Prime, Mr. D.J. Osborne and Mr. R.C. Harden for g.l.c and n.m.r. assays.

References

- "The Knoevenagel Condensation" in Organic Reactions, <u>15</u>, 204-599, Wiley, Interscience, N.Y. 1967.
- 2. J. Ghosez, Bull. Soc. Chim. Belg., <u>41</u>, 477, (1932).
- 3. M. Harfenist and A.J. Phillips, J. Amer. Chem. Soc., 80, 6261 (1958).
- 4. E.J. Corey and G. Fraenkel, J. Amer. Chem. Soc., 75, 1168, (1953).
- 5. J. Klein and A.Y. Meyer, J. Org. Chem., 29, 1038, (1964).
- 6. T. Cohen and R.A. Schambach, J. Amer. Chem. Soc., 92, 3189 (1970).
- 7. D.B. Roll and A.C. Huitric, J. Pharm. Sci., 54, 1110, (1965).
- 8. A. Lapworth and W. Baker, Organic Synthesis, Coll. Vol. I, p. 181.

3844